Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ammonium alters N‐glycan structures of recombinant TNFR‐IgG: Degradative versus biosynthetic mechanisms

Identifieur interne : 002574 ( Main/Exploration ); précédent : 002573; suivant : 002575

Ammonium alters N‐glycan structures of recombinant TNFR‐IgG: Degradative versus biosynthetic mechanisms

Auteurs : Martin Gawlitzek [États-Unis, Oman] ; Thomas Ryll [États-Unis] ; Jim Lofgren [États-Unis] ; Mary B. Sliwkowski [États-Unis]

Source :

RBID : ISTEX:6104ED4952EF72DE6BA0018D38272445941EBC12

English descriptors

Abstract

The effect of ammonium on the glycosylation pattern of the recombinant immunoadhesin tumor necrosis factor–IgG (TNFR‐IgG) produced by Chinese hamster ovary cells is elucidated in this study. TNFR‐IgG is a chimeric IgG fusion protein bearing one N‐linked glycosylation site in the Fc region and three complex‐type N‐glycans in the TNF‐receptor portion of each monomer. The ammonium concentration of batch suspension cultures was adjusted with glutamine and/or NH4Cl. The amount of galactose (Gal) and N‐acetylneuraminic acid (NANA) residues on TNFR‐IgG correlated in a dose‐dependent manner with the ammonium concentration under which the N‐linked oligosaccharides were synthesized. As ammonium increased from 1 to 15 mM, a concomitant decrease of up to 40% was observed in terminal galactosylation and sialylation of the molecule. Cell culture supernatants contained measurable β‐galactosidase and sialidase activity, which increased throughout the culture. The β‐galactosidase, but not the sialidase, level was proportional to the ammonium concentration. No loss of N‐glycans was observed in incubation studies using β‐galactosidase and sialidase containing cell culture supernatants, suggesting that the ammonium effect was biosynthetic and not degradative. Several biosynthetic mechanisms were investigated. Ammonium (a weak base) is known to affect the pH of acidic intracellular compartments (e.g., trans‐Golgi) as well as intracellular nucleotide sugar pools (increases UDP‐N‐acetylglucosamine and UDP‐N‐acetylgalactosamine). Ammonium might also affect the expression rates of β1,4‐galactosyltransferase (β1,4‐GT) and α2,3‐sialyltransferase (α2,3‐ST). To separate these mechanisms, experiments were designed using chloroquine (changes intracellular pH) and glucosamine (increases UDP‐GNAc pool [sum of UDP‐GlcNAc and UDP‐GalNAc]). The ammonium effect on TNFR‐IgG oligosaccharide structures could be mimicked only by chloroquine, another weak base. No differences in N‐glycosylation were found in the product synthesized in the presence of glucosamine. No differences in β1,4‐galactosyltransferase (β1,4‐GT) and α2,3‐sialyltransferase (α2,3‐ST) messenger RNA (mRNA) and enzyme levels were observed in cells cultivated in the presence or absence of 13 mM NH4Cl. pH titration of endogenous CHO α2,3‐ST and β‐1,4‐GT revealed a sharp optimum at pH 6.5, the reported trans‐Golgi pH. Thus, at pH 7.0 to 7.2, a likely trans‐Golgi pH range in the presence of 10 to 15 mM ammonium, activities for both enzymes are reduced to 50% to 60%. Consequently, ammonium seems to alter the carbohydrate biosynthesis of TNFR‐IgG by a pH‐mediated effect on glycosyltransferase activity. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 68: 637–646, 2000.

Url:
DOI: 10.1002/(SICI)1097-0290(20000620)68:6<637::AID-BIT6>3.0.CO;2-C


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ammonium alters N‐glycan structures of recombinant TNFR‐IgG: Degradative versus biosynthetic mechanisms</title>
<author>
<name sortKey="Gawlitzek, Martin" sort="Gawlitzek, Martin" uniqKey="Gawlitzek M" first="Martin" last="Gawlitzek">Martin Gawlitzek</name>
</author>
<author>
<name sortKey="Ryll, Thomas" sort="Ryll, Thomas" uniqKey="Ryll T" first="Thomas" last="Ryll">Thomas Ryll</name>
</author>
<author>
<name sortKey="Lofgren, Jim" sort="Lofgren, Jim" uniqKey="Lofgren J" first="Jim" last="Lofgren">Jim Lofgren</name>
</author>
<author>
<name sortKey="Sliwkowski, Mary B" sort="Sliwkowski, Mary B" uniqKey="Sliwkowski M" first="Mary B." last="Sliwkowski">Mary B. Sliwkowski</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:6104ED4952EF72DE6BA0018D38272445941EBC12</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1002/(SICI)1097-0290(20000620)68:6<637::AID-BIT6>3.0.CO;2-C</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-NXJ355B7-5/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000730</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000730</idno>
<idno type="wicri:Area/Istex/Curation">000730</idno>
<idno type="wicri:Area/Istex/Checkpoint">001392</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001392</idno>
<idno type="wicri:doubleKey">0006-3592:2000:Gawlitzek M:ammonium:alters:n</idno>
<idno type="wicri:Area/Main/Merge">002602</idno>
<idno type="wicri:Area/Main/Curation">002574</idno>
<idno type="wicri:Area/Main/Exploration">002574</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Ammonium alters N‐glycan structures of recombinant TNFR‐IgG: Degradative versus biosynthetic mechanisms</title>
<author>
<name sortKey="Gawlitzek, Martin" sort="Gawlitzek, Martin" uniqKey="Gawlitzek M" first="Martin" last="Gawlitzek">Martin Gawlitzek</name>
<affiliation wicri:level="2">
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Process Sciences, Genentech, Inc., South San Francisco</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Current Address: Manufacturing Sciences, MS #75B, Genentech, Inc., 1 DNA Way, South San Francisco</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Oman</country>
</affiliation>
<affiliation wicri:level="2">
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Correspondence address: Process Sciences, Genentech, Inc., South San Francisco</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ryll, Thomas" sort="Ryll, Thomas" uniqKey="Ryll T" first="Thomas" last="Ryll">Thomas Ryll</name>
<affiliation wicri:level="2">
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Process Sciences, Genentech, Inc., South San Francisco</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lofgren, Jim" sort="Lofgren, Jim" uniqKey="Lofgren J" first="Jim" last="Lofgren">Jim Lofgren</name>
<affiliation wicri:level="2">
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Process Sciences, Genentech, Inc., South San Francisco</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sliwkowski, Mary B" sort="Sliwkowski, Mary B" uniqKey="Sliwkowski M" first="Mary B." last="Sliwkowski">Mary B. Sliwkowski</name>
<affiliation wicri:level="2">
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Process Sciences, Genentech, Inc., South San Francisco</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biotechnology and Bioengineering</title>
<title level="j" type="alt">BIOTECHNOLOGY AND BIOENGINEERING</title>
<idno type="ISSN">0006-3592</idno>
<idno type="eISSN">1097-0290</idno>
<imprint>
<biblScope unit="vol">68</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="637">637</biblScope>
<biblScope unit="page" to="646">646</biblScope>
<biblScope unit="page-count">10</biblScope>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2000-06-20">2000-06-20</date>
</imprint>
<idno type="ISSN">0006-3592</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-3592</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Ammonia</term>
<term>Ammonium</term>
<term>Ammonium chloride</term>
<term>Ammonium concentration</term>
<term>Ammonium concentrations</term>
<term>Ammonium levels</term>
<term>Assay</term>
<term>Assay buffer</term>
<term>Average values</term>
<term>Biochem</term>
<term>Bioreactors</term>
<term>Biosynthetic</term>
<term>Biosynthetic mechanisms</term>
<term>Biotechnol</term>
<term>Cell culture</term>
<term>Cell culture experiments</term>
<term>Cell culture supernatants</term>
<term>Cell lysis</term>
<term>Chinese hamster ovary</term>
<term>Chinese hamster ovary cells</term>
<term>Chloroquine</term>
<term>Different ammonium concentrations</term>
<term>Enzyme activities</term>
<term>Galactose</term>
<term>Galactosidase</term>
<term>Galactosidase activity</term>
<term>Galactosylation</term>
<term>Gawlitzek</term>
<term>Glucosamine</term>
<term>Glutamine</term>
<term>Glycoprotein</term>
<term>Glycosylation</term>
<term>Goochee</term>
<term>Gramer</term>
<term>Hamster</term>
<term>Hasilik</term>
<term>Intracellular</term>
<term>Liquid chromatography</term>
<term>Lysosomal</term>
<term>Lysosomal enzymes</term>
<term>Major energy source</term>
<term>Mammalian cell cultures</term>
<term>Mammalian cells</term>
<term>Mrna</term>
<term>Nh4cl</term>
<term>Nucleotide</term>
<term>Nucleotide pools</term>
<term>Oligosaccharide</term>
<term>Oligosaccharide structures</term>
<term>Orbital shaker</term>
<term>Ovary</term>
<term>Plasma cells</term>
<term>Protein glycosylation</term>
<term>Recombinant</term>
<term>Room temperature</term>
<term>Ryll</term>
<term>Sialic</term>
<term>Sialic acid</term>
<term>Sialic acid content</term>
<term>Sialidase</term>
<term>Sialidase activity</term>
<term>Sialidase concentration</term>
<term>Sialylation</term>
<term>Standard deviation</term>
<term>Supernatant</term>
<term>Terminal galactose</term>
<term>Terminal glycosylation</term>
<term>Various ammonium concentrations</term>
<term>Weak base</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of ammonium on the glycosylation pattern of the recombinant immunoadhesin tumor necrosis factor–IgG (TNFR‐IgG) produced by Chinese hamster ovary cells is elucidated in this study. TNFR‐IgG is a chimeric IgG fusion protein bearing one N‐linked glycosylation site in the Fc region and three complex‐type N‐glycans in the TNF‐receptor portion of each monomer. The ammonium concentration of batch suspension cultures was adjusted with glutamine and/or NH4Cl. The amount of galactose (Gal) and N‐acetylneuraminic acid (NANA) residues on TNFR‐IgG correlated in a dose‐dependent manner with the ammonium concentration under which the N‐linked oligosaccharides were synthesized. As ammonium increased from 1 to 15 mM, a concomitant decrease of up to 40% was observed in terminal galactosylation and sialylation of the molecule. Cell culture supernatants contained measurable β‐galactosidase and sialidase activity, which increased throughout the culture. The β‐galactosidase, but not the sialidase, level was proportional to the ammonium concentration. No loss of N‐glycans was observed in incubation studies using β‐galactosidase and sialidase containing cell culture supernatants, suggesting that the ammonium effect was biosynthetic and not degradative. Several biosynthetic mechanisms were investigated. Ammonium (a weak base) is known to affect the pH of acidic intracellular compartments (e.g., trans‐Golgi) as well as intracellular nucleotide sugar pools (increases UDP‐N‐acetylglucosamine and UDP‐N‐acetylgalactosamine). Ammonium might also affect the expression rates of β1,4‐galactosyltransferase (β1,4‐GT) and α2,3‐sialyltransferase (α2,3‐ST). To separate these mechanisms, experiments were designed using chloroquine (changes intracellular pH) and glucosamine (increases UDP‐GNAc pool [sum of UDP‐GlcNAc and UDP‐GalNAc]). The ammonium effect on TNFR‐IgG oligosaccharide structures could be mimicked only by chloroquine, another weak base. No differences in N‐glycosylation were found in the product synthesized in the presence of glucosamine. No differences in β1,4‐galactosyltransferase (β1,4‐GT) and α2,3‐sialyltransferase (α2,3‐ST) messenger RNA (mRNA) and enzyme levels were observed in cells cultivated in the presence or absence of 13 mM NH4Cl. pH titration of endogenous CHO α2,3‐ST and β‐1,4‐GT revealed a sharp optimum at pH 6.5, the reported trans‐Golgi pH. Thus, at pH 7.0 to 7.2, a likely trans‐Golgi pH range in the presence of 10 to 15 mM ammonium, activities for both enzymes are reduced to 50% to 60%. Consequently, ammonium seems to alter the carbohydrate biosynthesis of TNFR‐IgG by a pH‐mediated effect on glycosyltransferase activity. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 68: 637–646, 2000.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Oman</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Gawlitzek, Martin" sort="Gawlitzek, Martin" uniqKey="Gawlitzek M" first="Martin" last="Gawlitzek">Martin Gawlitzek</name>
</region>
<name sortKey="Gawlitzek, Martin" sort="Gawlitzek, Martin" uniqKey="Gawlitzek M" first="Martin" last="Gawlitzek">Martin Gawlitzek</name>
<name sortKey="Gawlitzek, Martin" sort="Gawlitzek, Martin" uniqKey="Gawlitzek M" first="Martin" last="Gawlitzek">Martin Gawlitzek</name>
<name sortKey="Lofgren, Jim" sort="Lofgren, Jim" uniqKey="Lofgren J" first="Jim" last="Lofgren">Jim Lofgren</name>
<name sortKey="Ryll, Thomas" sort="Ryll, Thomas" uniqKey="Ryll T" first="Thomas" last="Ryll">Thomas Ryll</name>
<name sortKey="Sliwkowski, Mary B" sort="Sliwkowski, Mary B" uniqKey="Sliwkowski M" first="Mary B." last="Sliwkowski">Mary B. Sliwkowski</name>
</country>
<country name="Oman">
<noRegion>
<name sortKey="Gawlitzek, Martin" sort="Gawlitzek, Martin" uniqKey="Gawlitzek M" first="Martin" last="Gawlitzek">Martin Gawlitzek</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002574 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002574 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:6104ED4952EF72DE6BA0018D38272445941EBC12
   |texte=   Ammonium alters N‐glycan structures of recombinant TNFR‐IgG: Degradative versus biosynthetic mechanisms
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021